3 years ago

Inducing High Coercivity in MoS2 Nanosheets by Transition Element Doping

Inducing High Coercivity in MoS2 Nanosheets by Transition Element Doping
Jiabao Yi, Xiang Ding, Rong Liu, Haiming Fan, Peter Paul Murmu, Jun Ding, Kiyonori Suzuki, Pengju Bian, Yiren Wang, Nina Bao, John Vedamuthu Kennedy, Rongkun Zheng, Sohail Ahmed
MoS2 nanosheets were doped with vanadium (V) with a variety of concentrations using a hydrothermal method. Raman, X-ray photoelectron spectroscopy, and electron paramagnetic resonance results indicate the effective substitutional doping in MoS2. Without V doping, oxides such as MoO2 and MoO3 have been observed, whereas with 5 at% V doping, the oxide disappeared. Magnetic measurements show that room temperature ferromagnetism has been induced by V doping. Magnetization tends to increase with the increased V doping concentration. A very large coercivity up to 1.87 kOe has been observed in 5 at% vanadium doped MoS2, which may attribute to a combination effect of localized charge transfer between V and S ions, pinning effect due to the in-between defects, stress induced by doping, and shape anisotropy due to two-dimensional nature of MoS2 ribbons.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02593

DOI: 10.1021/acs.chemmater.7b02593

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.