3 years ago

Catalytic conversion of 1,2-dichloroethane over Ni-Pd system into filamentous carbon material

Catalytic conversion of 1,2-dichloroethane over Ni-Pd system into filamentous carbon material
The alloyed Ni-Pd system with Pd content of 3wt.% was prepared by coprecipitation method followed by reduction in hydrogen atmosphere at 800°C. The formation of single-phase solid solution with unit cell parameter a=3.532(1) Å (determined by (331) reflex at 2θ ≈ 145°) corresponding to NiPd alloy with weight ratio 97:3 was confirmed by XRD analysis. Kinetic studies on catalytic conversion of 1,2-dichloroethane (DCE) over NiPd alloy into carbon nanomaterial (CNM) were performed in a flow reactor equipped with McBain balances in a temperature range of 580–700°C. It was shown that interaction of DCE with NiPd system results in a fast disintegration of pristine alloy with formation of submicron (0.2-0.9μm) particles, which efficiently catalyze the growth of segmented carbon filaments. According to Raman spectroscopy and transmission electron microscopy data, hydrogen concentration in reaction mixture strongly affects the structural features and density of segmented filaments. The average values of inter-segmental distance calculated from TEM micrographs of carbon filaments were found to be 96, 46, 16nm for hydrogen concentration of 23, 36 and 47 vol.%, respectively. Strongly chemisorbed chlorine species were suggested to be responsible for the cyclic perturbations in carbon transfer and deposition. Obtained carbon nanomaterials were characterized with comparatively high specific surface area (300–400m2/g) and extremely low bulk density (<0.03g/ml).

Publisher URL: www.sciencedirect.com/science

DOI: S0920586116307349

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.