3 years ago

Endothelial Mesenchymal Transition in Hypoxic Microvascular Endothelial Cells and Paracrine Induction of Cardiomyocyte Apoptosis Are Mediated via TGFβ₁/SMAD Signaling.

Rainer Schulz, Mona Prieß, Jacqueline Heger, Isabella Sniegon, Gerhild Euler
Cardiac remodeling plays a crucial role in the development of heart failure after mycocardial infarction. Besides cardiomyocytes, endothelial cells are recognized to contribute to cardiac remodeling. We now investigated processes of endothelial mesenchymal transition (EndoMT) in microvascular endothelial cells of rat (MVEC) under hypoxia and paracrine effects on ventricular cardiomyocytes of adult rat. Exposure of MVECs to hypoxia/reoxygenation enhanced TGFβ/SMAD signaling, since phosphorylation, and thus activation, of SMAD1/5 and SMAD2 increased. This increase was blocked by inhibitors of TGFβ receptor types ALK1 or ALK5. Exposure of ventricular cardiomyocytes to conditioned medium from hypoxic/reoxygenated MVECs enhanced SMAD2 phosphorylation and provoked apoptosis in cardiomyoyctes. Both were blocked by ALK5 inhibition. To analyze autocrine effects of hypoxic TGFβ signaling we investigated EndoMT in MVECs. After 3 days of hypoxia the mesenchymal marker protein α-smooth muscle actin (α-SMA), and the number of α-SMA- and fibroblast specific protein 1 (FSP1)-positive cells increased in MVECs cultures. This was blocked by ALK5 inhibition. Similarly, TGFβ₁ provoked enhanced expression of α-SMA and FSP1 in MVECs. In conclusion, hypoxia provokes EndoMT in MVECs via TGFβ₁/SMAD2 signaling. Furthermore, release of TGFβ₁ from MVECs acts in a paracrine loop on cardiomyocytes and provokes apoptotic death. Thus, in myocardial infarction hypoxic endothelial cells may contribute to cardiac remodeling and heart failure progression by promotion of cardiac fibrosis and cardiomyocytes death.

Publisher URL: http://doi.org/10.3390/ijms18112290

DOI: 10.3390/ijms18112290

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.