3 years ago

FT-IR study of NO adsorption on MoS2/Al2O3 hydrodesulfurization catalysts: Effect of catalyst preparation

FT-IR study of NO adsorption on MoS2/Al2O3 hydrodesulfurization catalysts: Effect of catalyst preparation
The effect of catalyst preparation on structure and performance of MoS2/Al2O3 hydrodesulfurization (HDS) catalysts was studied by NO adsorption, monitored by infrared spectroscopy (NO-IR) and complemented with EXAFS. The main bands at 1785cm−1 and 1690cm−1 were assigned to the ν(NO) stretching vibrations of coupled mono- or dinitrosyl surface complexes. NO adsorption on sulfided catalysts prepared with nitrilotriacetic acid (NTA) or citric acid (CA) gave rise to additional bands in the IR spectra at 1655cm−1, 1630cm−1 and 1615cm−1, assigned to mononitrosyl adsorption modes. Catalysts prepared with NTA and CA were more active in thiophene HDS than calcined or dried catalysts, despite comparable NO uptake (0.10-0.12 NO/Mo). This was attributed to a changed MoS2 edge structure as suggested by the NO-IR data, as well as to an improved degree of sulfidation as observed by EXAFS. Correlating NO uptake with MoS2 dispersion shows that not more than 30–40% of edge and corner sites were probed with NO. This implies that only a small portion of edge sites may act as active sites in HDS catalysis.

Publisher URL: www.sciencedirect.com/science

DOI: S092058611630493X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.