3 years ago

Folate-PEG-NOTA-Al18F: A New Folate Based Radiotracer for PET Imaging of Folate Receptor-Positive Tumors

Folate-PEG-NOTA-Al18F: A New Folate Based Radiotracer for PET Imaging of Folate Receptor-Positive Tumors
Daniel Rubins, Shu-An Lin, Xiangjun Meng, Patricia Miller, Dinko González Trotter, Philip S. Low, Hyking Haley, Zhizhen Zeng, Paul McQuade, Qingshou Chen
The folate receptor (FR) has been established as a promising target for imaging and therapy of cancer (FR-α), inflammation, and autoimmune diseases (FR-β). Several folate based PET radiotracers have been reported in the literature, but an 18F-labeled folate-PET imaging agent with optimal properties for clinical translation is still lacking. In the present study, we report the design and preclinical evaluation of folate-PEG12-NOTA-Al18F (1), a new folate-PET agent with improved potential for clinical applications. Radiochemical synthesis of 1 was achieved via a one-pot labeling process by heating folate-PEG12-NOTA in the presence of in situ prepared Al18F for 15 min at 105 °C, followed by HPLC purification. Specific binding of 1 to FR was evaluated on homogenates of KB (FR-positive) and A549 (FR-deficient) tumor xenografts in the presence and absence of excess folate. In vivo tumor imaging with folate-PEG12-NOTA-Al18F was compared to imaging with 99mTc-EC20 using nu/nu mice bearing either KB or A549 tumor xenografts. Specific accumulation of 1 in tumor and other tissues was assessed by high-resolution micro-PET and ex vivo biodistribution in the presence and absence of excess folate. Radiosynthesis of 1 was accomplished within ∼35 min, affording pure radiotracer 1 in 8.4 ± 1.3% (decay corrected) radiochemical yield with ∼100% radiochemical purity after HPLC purification and a specific activity of 35.8 ± 15.3 GBq/mmol. Further in vitro and in vivo examination of 1 demonstrated highly specific FR-mediated uptake in FR+ tumor, with Kd of ∼0.4 nM (KB), and reduced accumulation in liver. Given its facile preparation and improved properties, the new radiotracer, folate-PEG12-NOTA-Al18F (1), constitutes a promising tool for identification and classification of patients with FR overexpressing cancers.

Publisher URL: http://dx.doi.org/10.1021/acs.molpharmaceut.7b00415

DOI: 10.1021/acs.molpharmaceut.7b00415

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.