3 years ago

Violation of the Sphericity Assumption and Its Effect on Type-I Error Rates in Repeated Measures ANOVA and Multi-Level Linear Models (MLM).

Nicolas Haverkamp, André Beauducel
We investigated the effects of violations of the sphericity assumption on Type I error rates for different methodical approaches of repeated measures analysis using a simulation approach. In contrast to previous simulation studies on this topic, up to nine measurement occasions were considered. Effects of the level of inter-correlations between measurement occasions on Type I error rates were considered for the first time. Two populations with non-violation of the sphericity assumption, one with uncorrelated measurement occasions and one with moderately correlated measurement occasions, were generated. One population with violation of the sphericity assumption combines uncorrelated with highly correlated measurement occasions. A second population with violation of the sphericity assumption combines moderately correlated and highly correlated measurement occasions. From these four populations without any between-group effect or within-subject effect 5,000 random samples were drawn. Finally, the mean Type I error rates for Multilevel linear models (MLM) with an unstructured covariance matrix (MLM-UN), MLM with compound-symmetry (MLM-CS) and for repeated measures analysis of variance (rANOVA) models (without correction, with Greenhouse-Geisser-correction, and Huynh-Feldt-correction) were computed. To examine the effect of both the sample size and the number of measurement occasions, sample sizes of n = 20, 40, 60, 80, and 100 were considered as well as measurement occasions of m = 3, 6, and 9. With respect to rANOVA, the results plead for a use of rANOVA with Huynh-Feldt-correction, especially when the sphericity assumption is violated, the sample size is rather small and the number of measurement occasions is large. For MLM-UN, the results illustrate a massive progressive bias for small sample sizes (n = 20) and m = 6 or more measurement occasions. This effect could not be found in previous simulation studies with a smaller number of measurement occasions. The proportionality of bias and number of measurement occasions should be considered when MLM-UN is used. The good news is that this proportionality can be compensated by means of large sample sizes. Accordingly, MLM-UN can be recommended even for small sample sizes for about three measurement occasions and for large sample sizes for about nine measurement occasions.

Publisher URL: http://doi.org/10.3389/fpsyg.2017.01841

DOI: 10.3389/fpsyg.2017.01841

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.