3 years ago

Quantum counting: Operator methods for discrete population dynamics with applications to cell division

The set of natural numbers may be identified with the spectrum of eigenvalues of an operator (quantum counting), and the dynamical equations of populations of discrete, countable items may be formulated using operator methods. These equations take the form of time dependent operator equations, involving Hamiltonian operators, from which the statistical time dependence of population numbers may be determined. The quantum operator method is illustrated by a novel approach to cell population dynamics. This involves Hamiltonians that mimic the process of stimulated cell division. We evaluate two different models, one in which the stimuli are expended in the division process and one in which the stimuli act as true catalysts. While the former model exhibits only bounded cell population variations, the latter exhibits two distinct regimes; one has bounded population fluctuations about a mean level and in the other, the population can undergo growth to levels that are orders of magnitude above threshold levels, through an instability that could be interpreted as a cancerous growth phase.

Publisher URL: www.sciencedirect.com/science

DOI: S0079610716301754

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.