3 years ago

A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation

A general strategy to the synthesis of carbon-supported PdM (M = Co, Fe and Ni) nanodendrites as high-performance electrocatalysts for formic acid oxidation
Rational synthesis of a new class of electrocatalysts with high-performance and low-cost is of great significance for future fuel cell devices. Herein, we demonstrate a general one-step simultaneous reduction method to prepare carbon-supported PdM (M = Co, Fe, Ni) alloyed nanodendrites with the assistance of oleylamine and octadecylene. The morphology, structure and composition of the obtained PdM nanodendrites/C catalysts have been fully characterized. The combination of the dendritic structural feature and alloyed synergy offer higher atomic utilization efficiency, excellent catalytic activity and enhanced stability for the formic acid oxidation reaction (FAOR). Strikingly, the as-synthesized PdCo nanodendrites/C catalyst could afford a mass current density of 2467.7 A g−1, which is almost 3.53 and 10.4 times higher than those of lab-made Pd/C sample (698.3 A g−1) and commercial Pd/C catalyst (237.6 A g−1), respectively. Furthermore, the PdCo nanodendrites/C catalyst also exhibit superior stability relative to the Pd/C catalysts, make it a promising anodic electrocatalyst in practical fuel cells in the future. Additionally, the present feasible synthetic approach is anticipated to provide a versatile strategy toward the preparation of other metal alloy nanodendrites/carbon nanohybrids.

Publisher URL: www.sciencedirect.com/science

DOI: S2095495617309002

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.