3 years ago

Constraining Magnetization of Gamma-Ray Bursts Outflows using Prompt Emission Fluence.

Asaf Pe'er

I consider here acceleration and heating of relativistic outflow by local magnetic energy dissipation process in Poynting flux dominated outflow. Adopting the standard assumption that the reconnection rate scales with the Alfven speed, I show here that the fraction of energy dissipated as thermal photons cannot exceed (13 $\hat \gamma -14)^{-1} = 30$% (for adiabatic index $\hat \gamma = 4/3$) of the kinetic energy at the photosphere. Even in the most radiatively efficient scenario, the energy released as non-thermal photons during the prompt phase is at most equal to the kinetic energy of the outflow. These results imply that calorimetry of the kinetic energy that can be done during the afterglow phase, could be used to constrain the magnetization of gamma-ray bursts (GRB) outflows. I discuss the recent observational status, and its implications on constraining the magnetization in GRB outflows.

Publisher URL: http://arxiv.org/abs/1604.06590

DOI: arXiv:1604.06590v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.