3 years ago

The Radio Sky at Meter Wavelengths: m-Mode Analysis Imaging with the Owens Valley Long Wavelength Array.

Ryan M. Monroe, Hugh Garsden, Jonathon Kocz, Jayce Dowell, Gregg Hallinan, Steven W. Ellingson, Benjamin R. Barsdell, Marin M. Anderson, David P. Woody, Frank K. Schinzel, T. Joseph W. Lazio, Jacob M. Hartman, Yuankun Wang, Gregory B. Taylor, Stephen A. Bourke, Michael W. Eastwood, Danny C. Price, Harish K. Vedantham, Lincoln J. Greenhill, M. A. Clark

A host of new low-frequency radio telescopes seek to measure the 21-cm transition of neutral hydrogen from the early universe. These telescopes have the potential to directly probe star and galaxy formation at redshifts $20 \gtrsim z \gtrsim 7$, but are limited by the dynamic range they can achieve against foreground sources of low-frequency radio emission. Consequently, there is a growing demand for modern, high-fidelity maps of the sky at frequencies below 200 MHz for use in foreground modeling and removal. We describe a new widefield imaging technique for drift-scanning interferometers, Tikhonov-regularized $m$-mode analysis imaging. This technique constructs images of the entire sky in a single synthesis imaging step with exact treatment of widefield effects. We describe how the CLEAN algorithm can be adapted to deconvolve maps generated by $m$-mode analysis imaging. We demonstrate Tikhonov-regularized $m$-mode analysis imaging using the Owens Valley Long Wavelength Array (OVRO-LWA) by generating 8 new maps of the sky north of $\delta=-30^\circ$ with 15 arcmin angular resolution, at frequencies evenly spaced between 36.528 MHz and 73.152 MHz, and $\sim$800 mJy/beam thermal noise. These maps are a 10-fold improvement in angular resolution over existing full-sky maps at comparable frequencies, which have angular resolutions $\ge 2^\circ$. Each map is constructed exclusively from interferometric observations and does not represent the globally averaged sky brightness. Future improvements will incorporate total power radiometry, improved thermal noise, and improved angular resolution -- due to the planned expansion of the OVRO-LWA to 2.6 km baselines. These maps serve as a first step on the path to the use of more sophisticated foreground filters in 21-cm cosmology incorporating the measured angular and frequency structure of all foreground contaminants.

Publisher URL: http://arxiv.org/abs/1711.00466

DOI: arXiv:1711.00466v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.