3 years ago

Full counting statistics approach to the quantum non-equilibrium Landauer bound.

Steve Campbell, Simon Pigeon, Bassano Vacchini, Giacomo Guarnieri, Mauro Paternostro, John Goold

We develop the full counting statistics of dissipated heat to explore the relation with Landauer's principle. Combining the two-time measurement protocol for the reconstruction of the statistics of heat with the minimal set of assumptions for Landauer's principle to hold, we derive a general one-parameter family of upper and lower bounds on the mean dissipated heat from a system to its environment. Furthermore, we establish a connection with the degree of non-unitality of the system's dynamics and show that, if a large deviation function exists as stationary limit of the above cumulant generating function, then our family of lower and upper bounds can be used to witness and understand first-order dynamical phase transitions. For the purpose of demonstration, we apply these bounds to an externally pumped three level system coupled to a finite sized thermal environment.

Publisher URL: http://arxiv.org/abs/1704.01078

DOI: arXiv:1704.01078v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.