3 years ago

Dynamic transport in a quantum wire driven by spin-orbit interaction.

Yasha Gindikin

We consider a gated one-dimensional (1D) quantum wire disturbed in a contactless manner by an alternating electric field produced by a tip of a scanning probe microscope. In this schematic 1D electrons are driven not by a pulling electric field but rather by a non-stationary spin-orbit interaction (SOI) created by the tip. We show that a charge current appears in the wire in the presence of the Rashba SOI produced by the gate net charge and image charges of 1D electrons induced on the gate (iSOI). The iSOI contributes to the charge susceptibility by breaking the spin-charge separation between the charge- and spin collective excitations, generated by the probe. The velocity of the excitations is strongly renormalized by SOI, which opens a way to fine-tune the charge and spin response of 1D electrons by changing the gate potential. One of the modes softens upon increasing the gate potential to enhance the current response as well as the power dissipated in the system.

Publisher URL: http://arxiv.org/abs/1709.09530

DOI: arXiv:1709.09530v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.