5 years ago

A Sequential Suzuki Coupling Approach to Unsymmetrical Aryl s-Triazines from Cyanuric Chloride

A Sequential Suzuki Coupling Approach to Unsymmetrical Aryl s-Triazines from Cyanuric Chloride
Jie Tang, Gang Zou, Jiehui Zhang, Chen Wang
A practical approach has been developed for efficient synthesis of unsymmetrical aryl s-triazines via highly selective sequential Suzuki coupling of cyanuric chloride (2,4,6-trichlorotriazine) with aryl or vinyl boronic or diarylborinic acids catalysed by 0.1–0.5 mol% Pd(PPh3)2Cl2 under mild conditions. The second and third Suzuki couplings for unsymmetrically trisubstituted aryl s-triazines could be more practically conducted in one-pot procedure. An electron-withdrawing conjugate group at phenyl ring of arylboronic acids was unexpectedly found to completely block the coupling while steric hindrance from an ortho electron-donating substituent could be overcome.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adsc.201700260

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.