3 years ago

Revisiting the Gluon Spectrum in the Boost-Invariant Glasma from a Semi-Analytic Approach.

Ming Li

In high energy heavy-ion collisions, the degrees of freedom at the very early stage can be effectively represented by strong classical gluonic fields within the Color Glass Condensate framework. As the system expands, the strong gluonic fields eventually become weak such that an equivalent description using the gluonic particle degrees of freedom starts to become valid. We revisit the spectrum of these gluonic particles by solving the classical Yang-Mills equations semi-analytically with the solutions having the form of power series expansions in the proper time. We propose a different formula for the gluon spectrum which is consistent with energy density during the whole time evolution. We find that the chromo-electric fields have larger contributions to the gluon spectrum than the chromo-magnetic fields do. Furthermore, the large momentum modes take less time to reach the weak-field regime while smaller momentum modes take more time. The resulting functional form of the gluon spectrum is exponential in nature and the spectrum is close to a thermal distrubtion with effective temperatures around $0.6$ to $0.9\, Q_s$ late in the Glasma evolution. The sensitiveness of the gluon spectrum to the infrared and the ultraviolet cut-offs are discussed.

Publisher URL: http://arxiv.org/abs/1711.00409

DOI: arXiv:1711.00409v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.