5 years ago

Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass

Effect of process parameters for production of microporous magnetic biochar derived from agriculture waste biomass
Durian, which is also known as the king of fruits, is one of the widely consumed fruits in South east Asia, especially in Malaysia, Thailand, Indonesia, Philippines and Singapore. The high demand for durian in Malaysia has led to the accumulation of waste durian rind without proper disposable management in place. Therefore, a novel magnetic biochar was synthesized utilizing the durian rind in the presence of iron oxide, by employing the pyrolysis process in an electrical muffle furnace in a vacuum condition. The effect of pyrolysis temperature, pyrolysis time and sonication frequency was studied to determine the optimum condition for the production of magnetic biochar. The analysis shows that a pyrolysis temperature of 800 °C, pyrolysis time of 25 min and sonication frequency 70 are required for the production of magnetic biochar with a high yield and surface area. These newly produced magnetic biochar have a high surface area of 820 m2/g which provide 98% removal of congo red from the aqueous solution with an adsorption capacity of 87.32 mg/g.

Publisher URL: www.sciencedirect.com/science

DOI: S1387181117304341

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.