3 years ago

Ontological states and dynamics of discrete (pre-)quantum systems.

Hans-Thomas Elze

The notion of ontological states is introduced here with reference to the Cellular Automaton Interpretation of Quantum Mechanics proposed by G.'t Hooft. A class of discrete deterministic "Hamiltonian" Cellular Automata is defined that has been shown to bear many features in common with continuum quantum mechanical models, however, deformed by the presence of a finite discreteness scale $l$, such that for $l\rightarrow 0$ the usual properties result -- e.g., concerning linearity, dispersion relations, multipartite systems, and Superposition Principle. We argue that within this class of models only very primitive realizations of ontological states and their dynamics can exist, since the equations of motion tend to produce superposition states that are not ontological. The most interesting, if not only way out seems to involve interacting multipartite systems composed of two-state "Ising spins", which evolve by a unitary transfer matrix. Thus, quantum like and ontological models appear side by side here, but distinguished by second-order and first-order dynamics, respectively.

Publisher URL: http://arxiv.org/abs/1711.00324

DOI: arXiv:1711.00324v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.