3 years ago

Determination of Asphaltene Critical Nanoaggregate Concentration Region Using Ultrasound Velocity Measurements.

M. J. W. Povey, A. Svalova, G. D. Abbott, N. G. Parker

Asphaltenes constitute the heaviest, most polar and aromatic fraction of petroleum crucial to the formation of highly-stable water- in-crude oil emulsions. The latter occur during crude oil production as well as spills and cause difficulties to efficient remediation practice. It is thought that in nanoaggregate form, asphaltenes create elastic layers around water droplets enhancing stability of the emulsion matrix. Ultrasonic characterisation is a high-resolution non-invasive tool in colloidal analysis shown to successfully identify asphaltene nanoaggregation in toluene. The high sensitivity of acoustic velocity to molecular rearrangements and ease in implementation renders it an attractive method to study asphaltene phase properties. Currently, aggregation is thought to correspond to an intersection of two concentration-ultrasonic velocity regressions. Our measurements indicate a variation in the proximity of nanoaggregation which is not accounted for by present models. We attribute this uncertainty to physico-chemical heterogeneity of the asphaltene fraction driven by variation in molecular size and propose a critical nanoaggregation region. We treated asphaltenes from North and South American crude oils with ruthenium ion catalysed oxidation to characterise their n-alkyl appendages attached to aromatic cores. Principal component analysis was performed to investigate the coupling between asphaltene structures and velocity measurements and their impact on aggregation.

Publisher URL: http://arxiv.org/abs/1711.00306

DOI: arXiv:1711.00306v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.