3 years ago

An extended hybrid numerical simulation of isotropic compressible turbulence.

X. T. He, J. C. Wang, Y. P. Shi, S. Y. Chen, L. Q. Liu

This paper presents an extension of the hybrid scheme proposed by Wang et al. (J. Comput. Phys. 229 (2010) 169-180) for numerical simulation of compressible isotropic turbulence to flows with higher turbulent Mach numbers. The scheme still utilizes an 8th-order compact scheme with built-in hyperviscosity for smooth regions and a 7th-order WENO scheme for highly compressive regions, but now both in their conservation formulations and for the latter with the Roe type characteristic-wise reconstruction. To enhance the robustness of the WENO scheme without compromising its high-resolution and accuracy, the recursive-order-reduction procedure is adopted, where a new type of reconstruction-failure-detection criterion is constructed. To capture the upwind direction properly in extreme conditions, the global Lax-Friedrichs numerical flux is used. In addition, a new form of cooling function is proposed, which is proved to be positivity-preserving. With these techniques, the new scheme not only inherits the good properties of the original one but also extends largely the computable range of turbulent Mach number, which has been further confirmed by numerical results.

Publisher URL: http://arxiv.org/abs/1711.00255

DOI: arXiv:1711.00255v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.