3 years ago

Statistical dynamics of spatial-order formation by communicating cells.

Hyun Youk, Eduardo P. Olimpio, Yiteng Dang

Communicating cells can coordinate their gene expressions to form spatial patterns. 'Secrete-and-sense cells' secrete and sense the same molecule to do so and are ubiquitous. Here we address why and how these cells, from disordered beginnings, can form spatial order through a statistical mechanics-type framework for cellular communication. Classifying cellular lattices by 'macrostate' variables - 'spatial order paramete' and average gene-expression level - reveals a conceptual picture: cellular lattices act as particles rolling down on 'pseudo-energy landscapes' shaped by a 'Hamiltonian' for cellular communication. Particles rolling down represent cells' spatial order increasing. Particles trapped on the landscapes represent metastable spatial configurations. The gradient of the Hamiltonian and a 'trapping probability' determine the particle's equation of motion. This framework is extendable to more complex forms of cellular communication.

Publisher URL: http://arxiv.org/abs/1706.06481

DOI: arXiv:1706.06481v4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.