5 years ago

Microporous carbon spheres derived from resorcinol-formaldehyde solutions. A new approach to coat supports

Microporous carbon spheres derived from resorcinol-formaldehyde solutions. A new approach to coat supports
Microporous carbon spheres of different morphology and porosity were synthesized from resorcinol-formaldehyde solutions by a simple and fast procedure. Polymeric spheres were shaped by means of microwave heating. Carbonization and activation with carbon dioxide were then applied to obtain the intended final carbon spheres. The influence of the pH, heating time and thermal treatments on the morphology and porosity of the carbon spheres was investigated. It was found that the size of the spheres, can be easily controlled during the synthesis process, specifically by modifying the pH of the precursor solution. An increase in the pH value from 3 to 5 led to carbon spheres with sizes of 4 μm and 3.5 μm, respectively, whereas time seemed to have no effect. These results have been attributed to the chemical mechanisms of the polymerization reaction. On the other hand, microporosity was tailored during the thermal treatments. Carbon spheres with surface areas of 630 m2/g and 1500 m2/g were obtained by applying carbonization and physical activation, respectively. Furthermore, the synthesis method proposed allows to obtained liquid polymerized inks that can be further used to coat ceramic supports by a simple spray-drying process, which enhances the potential of these materials for several applications.

Publisher URL: www.sciencedirect.com/science

DOI: S1387181117304213

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.