3 years ago

New approaches for delineating n-dimensional hypervolumes

Cecina Babich Morrow, Christine Lamanna, David J. Harris, Brian J. Enquist, Benjamin Blonder, Andrew J. Kerkhoff, Brian Maitner, Cyrille Violle
Hutchinson's n-dimensional hypervolume concept underlies many applications in contemporary ecology and evolutionary biology. Estimating hypervolumes from sampled data has been an ongoing challenge due to conceptual and computational issues. We present new algorithms for delineating the boundaries and probability density within n-dimensional hypervolumes. The methods produce smooth boundaries that can fit data either more loosely (Gaussian kernel density estimation) or more tightly (one-classification via support vector machine). Further, the algorithms can accept abundance-weighted data, and the resulting hypervolumes can be given a probabilistic interpretation and projected into geographic space. We demonstrate the properties of these methods on a large dataset that characterises the functional traits and geographic distribution of thousands of plants. The methods are available in version ≥2.0.7 of the hypervolume r package. These new algorithms provide: (i) a more robust approach for delineating the shape and density of n-dimensional hypervolumes; (ii) more efficient performance on large and high-dimensional datasets; and (iii) improved measures of functional diversity and environmental niche breadth.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/2041-210X.12865

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.