3 years ago

The effects of hatching asynchrony on growth and mortality patterns in Eurasian Hoopoe Upupa epops nestlings

Barbara Hildebrandt, Michael Schaub
Growth is a fundamental life history trait in all organisms and is closely related to individual fitness. In altricial birds, growth of many traits is restricted to the short period between hatching and fledging and strongly depends on the amount of food that parents deliver and the extent of hatching asynchrony. However, empirical studies of energy allocation to growth of different body size traits as a function of hatching asynchrony are scarce. We studied growth and mortality of Eurasian Hoopoe Upupa epops, a species with a long breeding season and high brood size variance, whose nestlings show pronounced hatching asynchrony, in order to test how hatching asynchrony affects different growth traits in the context of territory quality, season and brood size. The growth of five body traits (body mass, and lengths of tarsus, third primary, bill and longest crest feather) was investigated to understand how it was affected by brood size, hatching date and order, and territory quality. In total, 241 nestlings from 39 nests were measured every 4 days in 2014 in south-western Switzerland. Brood size, hatching date and hatching order had the strongest influence on growth trajectories, although tarsus growth was only marginally affected by these variables. Nestlings that hatched earlier than their siblings were heavier and had longer third primaries, bills and crest feathers compared with later-hatched siblings. In territories of high quality, hatching order differences disappeared for body mass growth, but persisted for lengths of third primary, bill and crest feathers. Brood size was inversely associated with third primary, bill and crest feather lengths, but positively associated with body mass. Nestling mortality was higher in later-hatched nestlings and in broods that were raised in territories of lower quality. Our study shows that in nestlings, energy was allocated differentially between body traits and this allocation interacted with hatching order and territory quality. Rapid mass gain by nestlings was prioritized in order to increase competitive ability. Our results provide support for the brood reduction hypothesis as an explanation of hatching asynchrony in Hoopoes.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/ibi.12529

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.