3 years ago

Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger

Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger
D. Andrew Howell, Griffin Hosseinzadeh, Sergiy Vasylyev, Dovi Poznanski, Daniel Kasen, Jennifer Barnes, Curtis McCully, Iair Arcavi, Michael Zaltzman, Stefano Valenti, Dan Maoz

The merger of two neutron stars has been predicted to produce an optical–infrared transient (lasting a few days) known as a ‘kilonova’, powered by the radioactive decay of neutron-rich species synthesized in the merger1,2,3,4,5. Evidence that short γ-ray bursts also arise from neutron-star mergers has been accumulating6,7,8. In models2,9 of such mergers, a small amount of mass (10−4–10−2 solar masses) with a low electron fraction is ejected at high velocities (0.1–0.3 times light speed) or carried out by winds from an accretion disk formed around the newly merged object10,11. This mass is expected to undergo rapid neutron capture (r-process) nucleosynthesis, leading to the formation of radioactive elements that release energy as they decay, powering an electromagnetic transient1,2,3,9,10,11,-Abstract Truncated-

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.