3 years ago

Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO2 Capture

Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO2 Capture
Yangyang Mao, Jiajia Sun, Gongping Liu, Jianwei Yuan, Wanqin Jin, Haipeng Zhu
Because of the high separation performance and easy preparation, mixed-matrix membranes (MMMs) consisting of metal–organic frameworks have received much attention. In this article, we report a novel ZIF-300/PEBA MMM consisting of zeolite imidazolate framework (ZIF-300) crystals and polyether block amide (PEBA) matrix. The ZIF-300 crystal size was effectively reduced by optimizing the hydrothermal reaction condition from ∼15 to ∼1 μm. The morphology and physicochemical and sorption properties of the synthesized ZIF-300 crystals and as-prepared ZIF-300/PEBA MMMs were systematically studied. The results showed that ZIF-300 crystals with a size of ∼1 μm maintained excellent preferential CO2 sorption over N2 without degradation of the crystal structure in the MMMs. As a result, uniformly incorporated ZIF-300 crystals highly enhanced both the CO2 permeability and the CO2/N2 selectivity of pure PEBA membrane. The optimized ZIF-300-PEBA MMMs with a ZIF-300 loading of 30 wt % exhibited a high and stable CO2 permeability of 83 Barrer and CO2/N2 selectivity of 84, which are 59.2% and 53.5% higher than pure PEBA membrane, respectively. The obtained performance surpassed the upper bound of state-of-the-art membranes for CO2/N2 separation. This work demonstrated that the proposed ZIF-300/PEBA MMM could be a potential candidate for an efficient CO2 capture process.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b12507

DOI: 10.1021/acsami.7b12507

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.