3 years ago

Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal–Nitrogen Bonding

Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal–Nitrogen Bonding
Li Song, Xinlei Zhang, Xiaojun Wu, Jingjing Lin, Hangxun Xu, Shuangming Chen, Jia Yang
It is known that introducing metal nanoparticles (e.g., Fe and Co) into N-doped carbons can enhance the activity of N-doped carbons toward the oxygen reduction reaction (ORR). However, introducing metals into N-doped carbons inevitably causes the formation of multiple active sites. Thus, it is challenging to identify the active sites and unravel mechanisms responsible for enhanced ORR activity. Herein, by developing a new N-heterocyclic carbene (NHC)–Co complex as the nitrogen- and metal-containing precursor, we report the synthesis of N-doped carbon nanosheets embedded with Co nanoparticles as highly active ORR catalysts without direct metal–nitrogen bonding. Electrochemical measurements and X-ray absorption spectroscopy indicate that the carbon–nitrogen sites surrounding Co nanoparticles are responsible for the observed ORR activity and stability. Density functional theory calculations further reveal that Co nanoparticles could facilitate the protonation of O2 and thus promote the ORR activity. These results provide new prospects in the rational design and synthesis of heteroatom-doped carbon materials as non-precious-metal catalysts for various electrochemical reactions.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b11120

DOI: 10.1021/acsami.7b11120

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.