3 years ago

Half-Metallicity in Co-Doped WSe2 Nanoribbons

Half-Metallicity in Co-Doped WSe2 Nanoribbons
Hui-Ming Cheng, Runzhang Xu, Bilu Liu, Xiaolong Zou
The recent development of two-dimensional transition-metal dichalcogenides in electronics and optoelelectronics has triggered the exploration in spintronics, with high demand in search for half-metallicity in these systems. Here, through density functional theory (DFT) calculations, we predict robust half-metallic behaviors in Co-edge-doped WSe2 nanoribbons (NRs). With electrons partially occupying the antibonding state consisting of Co 3dyz and Se 4pz orbitals, the system becomes spin-polarized due to the defect-state-induced Stoner effect and the strong exchange splitting eventually gives rise to the half-metallicity. The half-metal gap reaches 0.15 eV on the DFT generalized gradient approximation level and increases significantly to 0.67 eV using hybrid functional. Furthermore, we find that the half-metallicity sustains even under large external strain and relatively low edge doping concentration, which promises the potential of such Co-edge-doped WSe2 NRs in spintronics applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b12196

DOI: 10.1021/acsami.7b12196

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.