Synthesis of multirecognition magnetic molecularly imprinted polymer by atom transfer radical polymerization and its application in magnetic solid-phase extraction
Abstract
In this work, we reported an effective method for the synthesis of a multirecognition magnetic molecularly imprinted polymer (MMIP) with atom transfer radical polymerization (ATRP), using 2,4-diamino-6-methyl-1,3,5-triazine as pseudo-template. The resulting MMIP was characterized in detail by Fourier transform-infrared (FT-IR) spectra, scanning electron microscopy (SEM), thermogravimetic analysis (TGA), and vibrating sample magnetometry (VSM). These results indicated the successful synthesis of MMIP with sufficient thermal stability and magnetic properties. The adsorption experiments were carried out to evaluate the specific selectivity of MMIP related to the spatial structure of target molecules. The MMIP exhibited multirecognition ability and excellent binding capability for melamine (MEL), cyromazine (CYR), triamterene (TAT), diaveridine (DVD), and trimethoprim (TME), and the apparent maximum number of binding sites (Q max) was 77.5, 75.2, 72.5, 69.9, and 70.4 μmol g−1, respectively. The multirecognition MMIP not only possessed adequate magnetic responsiveness for fast separation but also avoided the risk of template leakage on trace component analysis. Therefore, it was suitable for serving as a magnetic solid-phase extraction (MSPE) adsorbent. MSPE coupled with high-performance liquid chromatography analysis was applied to enrich and separate five target molecules from three samples. Recoveries for all target molecules ranged from 81.6 to 91.5% with relative standard deviations of no more than 4.1% (n = 3).
Publisher URL: https://link.springer.com/article/10.1007/s00216-017-0716-9
DOI: 10.1007/s00216-017-0716-9
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.