3 years ago

Release of Solubilizate from Micelle upon Core Freezing

Release of Solubilizate from Micelle upon Core Freezing
Jing Dai, Jan Skov Pedersen, Zahra Alaei, Beatrice Plazzotta, István Furó
By combining NMR (yielding 1H chemical shift, spin relaxation, and self-diffusion data) and small-angle X-ray scattering experiments, we investigate the complex temperature dependence of the molecular and aggregate states in aqueous solutions of the surfactant [CH3(CH2)17(OCH2CH2)20OH], abbreviated as C18E20, and hexamethyldisiloxane, HMDSO. The latter molecule serves as a model for hydrophobic solubilizates. Previously, the pure micellar solution was demonstrated to exhibit core freezing at approximately 7–8 °C. At room temperature, we find that HMDSO solubilizes at a volume fraction of approximately 10% in the core of the C18E20 micelles, which consists of molten and thereby highly mobile alkyl chains. Upon lowering the temperature, core freezing is found, just like in pure micelles, but at a temperature shifted significantly to 3 °C. The frozen cores contain immobile alkyl chains and exhibit a higher density but are essentially devoid (volume fraction below 1%) of the solubilizate. The latter molecules are released, first gradually and then rather steeply, from the core in the temperature range that is roughly delimited by the two core freezing temperatures, one for pure micelles and one for micelles with solubilizates. The release behavior of systems with different initial HMDSO loading follows the same master curve. This feature is rationalized in terms of loading capacity being strongly temperature dependent: upon lowering the temperature, release commences once the loading capacity descends below the actual solubilizate content. The sharp release curves and the actual release mechanism with its molecular features shown in rich detail have some bearing on a diverse class of possible applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b08912

DOI: 10.1021/acs.jpcb.7b08912

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.