3 years ago

Integrated Quasiplane Heteronanostructures of MoSe2/Bi2Se3 Hexagonal Nanosheets: Synergetic Electrocatalytic Water Splitting and Enhanced Supercapacitor Performance

Integrated Quasiplane Heteronanostructures of MoSe2/Bi2Se3 Hexagonal Nanosheets: Synergetic Electrocatalytic Water Splitting and Enhanced Supercapacitor Performance
Chunde Wang, Qing Yang, Junfa Zhu, Huanxin Ju, Jing Yang, Yuan Sun, Shiqi Xing
MoSe2 as a typical transition metal dichalcogenide holds great potential for energy storage and catalysis but its performance is largely limited by its poor conductivity. Bi2Se3 nanosheets, a kind of topological insulators, possess gapless edges on boundary and show metallic character on surface. According to the principle of complementary, a novel integrated quasiplane structure of MoSe2/Bi2Se3 hybrids is designed with artistic heteronanostructures via a hot injection in colloidal system. Interestingly, the heteronanostructures are typically constituted by single-layer Bi2Se3 hexagonal nanoplates evenly enclosed by small ultrathin hierarchical MoSe2 nanosheets on the whole surfaces. X-ray photoelectron spectroscopy investigations suggest obvious electron transfer from Bi2Se3 to MoSe2, which can help to enhance the conductivity of the hybrid electrode. Especially, schematic energy band diagrams derived from ultraviolet photoelectron spectroscopy studies indicate that Bi2Se3 has higher EF and smaller Φ than MoSe2, further confirming the electronic modulation between Bi2Se3 and MoSe2, where Bi2Se3 serves as an excellent substrate to provide electrons and acts as channels for high-rate transition. The MoSe2/Bi2Se3 hybrids demonstrating a low onset potential, small Tafel slope, high current density, and long-term stability suggest excellent hydrogen evolution reaction activity, whereas a high specific capacitance, satisfactory rate capability, and rapid ions diffusion indicate enhanced supercapacitor performance. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets are fabricated via a hot injection process for the first time. Investigations suggest there is obvious electron transfer from Bi2Se3 to MoSe2, which can help enhance the conductivity of the hybrid electrode. Owing to synergistic structural features, the MoSe2/Bi2Se3 hybrids exhibit significantly enhanced electrocatalytic water splitting activity and supercapacitive performance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adfm.201703864

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.