3 years ago

Microscale Electro-Hydrodynamic Cell Printing with High Viability

Microscale Electro-Hydrodynamic Cell Printing with High Viability
Dichen Li, Jinke Chang, Jiankang He, Xiang Zhao
Cell printing has gained extensive attentions for the controlled fabrication of living cellular constructs in vitro. Various cell printing techniques are now being explored and developed for improved cell viability and printing resolution. Here an electro-hydrodynamic cell printing strategy is developed with microscale resolution (<100 µm) and high cellular viability (>95%). Unlike the existing electro-hydrodynamic cell jetting or printing explorations, insulating substrate is used to replace conventional semiconductive substrate as the collecting surface which significantly reduces the electrical current in the electro-hydrodynamic printing process from milliamperes (>0.5 mA) to microamperes (<10 µA). Additionally, the nozzle-to-collector distance is fixed as small as 100 µm for better control over filament deposition. These features ensure high cellular viability and normal postproliferative capability of the electro-hydrodynamically printed cells. The smallest width of the electro-hydrodynamically printed hydrogel filament is 82.4 ± 14.3 µm by optimizing process parameters. Multiple hydrogels or multilayer cell-laden constructs can be flexibly printed under cell-friendly conditions. The printed cells in multilayer hydrogels kept alive and gradually spread during 7-days culture in vitro. This exploration offers a novel and promising cell printing strategy which might benefit future biomedical innovations such as microscale tissue engineering, organ-on-a-chip systems, and nanomedicine. A novel electro-hydrodynamic cell printing is presented to fabricate cell-laden constructs with microscale resolution and high viability by using insulating substrate and small nozzle-to-collector distance. The smallest width of the printed hydrogel line is 82.4 ± 14.3 µm and the cell viability is over 96%. It might benefit future biomedical innovations in the fields of microscale tissue engineering and nanomedicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201702626

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.