3 years ago

Improving the Efficiency of Beyond-RPA Methods within the Dielectric Matrix Formulation: Algorithms and Applications to the A24 and S22 Test Sets

Improving the Efficiency of Beyond-RPA Methods within the Dielectric Matrix Formulation: Algorithms and Applications to the A24 and S22 Test Sets
Sébastien Lebègue, Julien Claudot, Dario Rocca, Anant Dixit
Within a formalism based on dielectric matrices, the electron–hole time-dependent Hartree–Fock (eh-TDHF) and the adiabatic connection second-order screened exchange (AC-SOSEX) are promising approximations to improve ground-state correlation energies by including exchange effects beyond the random phase approximation (RPA). We introduce here an algorithm based on a Gram–Schmidt orthogonalization (GSO) procedure that significantly reduce the number of matrix elements to be computed to evaluate the response functions that enter in the formulation of these two methods. By considering the A24 test set, we show that this approach does not lead to a significant loss of accuracy and can be effectively applied to compute the small interaction energies involved in weakly bound dimers. Importantly, the GSO method significantly extends the applicability of the eh-TDHF and AC-SOSEX to large systems. This is shown by considering the S22 test set, which includes dimers with up to one hundred valence electrons requiring hundreds of thousands of plane-waves in the basis set. By comparing our results to coupled-cluster benchmark values, we show that the inclusion of exchange effects beyond the RPA significantly improves the accuracy, with mean absolute errors that decrease by almost 40% for the A24 test set and by almost 50% for the S22 test set. This approach based on dielectric matrices is particularly suited for plane-wave implementations and might be used in the future to improve the description of the correlation energy in solid state applications.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00837

DOI: 10.1021/acs.jctc.7b00837

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.