3 years ago

Confinement induced thermodynamic and kinetic facilitation of some Diels–Alder reactions inside a CB[7] cavitand

Confinement induced thermodynamic and kinetic facilitation of some Diels–Alder reactions inside a CB[7] cavitand
Pratim Kumar Chattaraj, Debdutta Chakraborty
The effect of geometrical confinement on the Diels–Alder reactions between some model dienes viz. furan, thiophene, cyclopentadiene, benzene, and a classic dienophile, ethylene has been explored by performing density functional theory-based calculations. The effect of confinement has been imposed by a rigid macrocyclic molecule cucurbit[7]uril (CB[7]). Results indicate that all the reactions become thermodynamically more favorable at 298.15 K temperature and one atmospheric pressure inside CB[7] as compared to the corresponding free gaseous state reactions. Moreover, the rate constants associated with the reactions experience manifold enhancement inside CB[7] as compared to the “unconfined” reactions. Suitable contribution from the entropy factor makes the concerned reactions more facile inside CB[7]. The energy gap between the frontier molecular orbitals of the dienes and dienophiles decrease inside CB[7] as compared to that in the free state reactions thereby allowing facile orbital interactions. The nature of interaction as well as bonding has been analyzed with the help of atoms-in-molecules, noncovalent interaction, natural bond orbital as well as energy decomposition analyses. Results suggest that all the guests bind with CB[7] in an attractive fashion. Primarily, noncovalent interactions stabilize the host–guest systems. © 2017 Wiley Periodicals, Inc. Diels–Alder reactions in between some dienes viz. furan, thiophene, cyclopentadiene, benzene, and a classic dienophile, ethylene become thermodynamically and kinetically more favorable at 298.15 K temperature and one atmospheric pressure inside CB[7] as compared to the corresponding free gaseous state reactions.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.25094

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.