3 years ago

1,3,5-Triazine-Based Microporous Polymers with Tunable Porosities for CO2 Capture and Fluorescent Sensing

1,3,5-Triazine-Based Microporous Polymers with Tunable Porosities for CO2 Capture and Fluorescent Sensing
Jun Guo, Qiao Huang, Jianqiao He, Guichao Kuang, Guipeng Yu, Chunyue Pan, Shuai Gu, Yu Fu
The synthetic control over pore structure remains highly desirable for porous organic frameworks. Here, we present a competitive chemistry strategy, i.e., a systematical regulation on Friedel–Crafts reaction and Scholl coupling reaction through tuning the ratios of monomers. This leads to a series of spirobifluorene-based microporous polymers (Sbf-TMPs) with systematically tuned porosities and N content. Unlike the existing copolymerization strategy by which the synthesized polymers exhibit a monotonic change tendency in the porosities, our networks demonstrate an unusually different trend where the porosity increases first and then decreases with the increasing Ph/Cl ratios for the monomers. This is mainly ascribed to the completion of coexisting reaction routines and the different “internal molecular free volumes” of the repeating units. The as-made networks feature tunable capacities for CO2 adsorption over a wide range and attractive CO2/N2 selectivities. Moreover, these donor–acceptor type frameworks exhibit selective and highly sensitive fluorescence-on or fluorescence-off properties toward volatile organic compounds, which implies their great potential in fluorescent sensors.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b01857

DOI: 10.1021/acs.macromol.7b01857

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.