3 years ago

Wind causes Totten Ice Shelf melt and acceleration

Esmee van Wijk, Alessandro Silvano, Donald D. Blankenship, David E. Gwyther, Chad A. Greene

Totten Glacier in East Antarctica has the potential to raise global sea level by at least 3.5 m, but its sensitivity to climate change has not been well understood. The glacier is coupled to the ocean by the Totten Ice Shelf, which has exhibited variable speed, thickness, and grounding line position in recent years. To understand the drivers of this interannual variability, we compare ice velocity to oceanic wind stress and find a consistent pattern of ice-shelf acceleration 19 months after upwelling anomalies occur at the continental shelf break nearby. The sensitivity to climate forcing we observe is a response to wind-driven redistribution of oceanic heat and is independent of large-scale warming of the atmosphere or ocean. Our results establish a link between the stability of Totten Glacier and upwelling near the East Antarctic coast, where surface winds are projected to intensify over the next century as a result of increasing atmospheric greenhouse gas concentrations.

Publisher URL: http://advances.sciencemag.org/cgi/content/short/3/11/e1701681

DOI: 10.1126/sciadv.1701681

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.