3 years ago

High-speed plasmonic modulator in a single metal layer

Christian Haffner, Larry R. Dalton, Yannick Salamin, Arne Josten, Ueli Koch, Marco Zahner, Yuriy Fedoryshyn, Wolfgang Heni, Juerg Leuthold, Claudia Hoessbacher, Delwin L. Elder, Benedikt Baeuerle, Masafumi Ayata

Plasmonics provides a possible route to overcome both the speed limitations of electronics and the critical dimensions of photonics. We present an all-plasmonic 116–gigabits per second electro-optical modulator in which all the elements—the vertical grating couplers, splitters, polarization rotators, and active section with phase shifters—are included in a single metal layer. The device can be realized on any smooth substrate surface and operates with low energy consumption. Our results show that plasmonics is indeed a viable path to an ultracompact, highest-speed, and low-cost technology that might find many applications in a wide range of fields of sensing and communications because it is compatible with and can be placed on a wide variety of materials.

Publisher URL: http://science.sciencemag.org/cgi/content/short/358/6363/630

DOI: 10.1126/science.aan5953

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.