3 years ago

Deep Phenotypic Mapping of Bacterial Cytoskeletal Mutants Reveals Physiological Robustness to Cell Size

Deep Phenotypic Mapping of Bacterial Cytoskeletal Mutants Reveals Physiological Robustness to Cell Size
Russell D. Monds, Handuo Shi, Kerwyn Casey Huang, Alexandre Colavin, Marty Bigos, Carolina Tropini

Summary

Size is a universally defining characteristic of all living cells and tissues and is intrinsically linked with cell genotype, growth, and physiology. Many mutations have been identified to alter cell size, but pleiotropic effects have largely hampered our ability to probe how cell size specifically affects fundamental cellular properties, such as DNA content and intracellular localization. To systematically interrogate the impact of cell morphology on bacterial physiology, we used fluorescence-activated cell sorting to enrich a library of hundreds of Escherichia coli mutants in the essential cytoskeletal protein MreB for subtle changes in cell shape, cumulatively spanning ∼5-fold variation in average cell volume. Critically, pleiotropic effects in the mutated library are most likely minimized because only one gene was mutated and because growth rate was unaffected, thereby allowing us to query the general effects of morphology on cellular physiology over a large range of cell sizes with high resolution. We discovered linear scaling of the abundance of DNA and the key division protein FtsZ with cell volume, a strong dependency of sensitivity to specific antibiotics on cell width, and a simple correlation between MreB localization pattern and cell width. Our systematic, quantitative approach reveals complex and dynamic links between bacterial morphology and physiology and should be generally applicable for probing size-related genotype-phenotype relationships.

Publisher URL: http://www.cell.com/current-biology/fulltext/S0960-9822(17)31265-4

DOI: 10.1016/j.cub.2017.09.065

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.