3 years ago

Novel simulation method of space charge effects in electron optical systems including emission of electrons

We present a comprehensive numerical method for iterative computation of electron optical systems influenced by space charge which can accurately describe all effects in an optical system, including areas near a cathode tip and all crossovers. We use two different algorithms of evaluating the space charge distribution in different parts of the system. The Monte-Carlo based particle-in-cell method is used in the vicinity of the cathode. The algorithm based on the calculation of the current density distribution from an aberration polynomial is used for the rest of the system. We introduce a re-meshing algorithm which adapts the finite element mesh used for the field calculation in each iteration to the actual space charge distribution to keep it sufficiently fine in all areas with non-zero space charge. The algorithm is finally tested on a design of an experimental electron-welding machine developed at the ISI of the CAS.

Publisher URL: www.sciencedirect.com/science

DOI: S0304399117303078

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.