3 years ago

Age-Related Macular Degeneration: A Connection between Human Herpes Virus-6A-Induced CD46 Downregulation and Complement Activation?

Walter Fierz
Viruses are able to interfere with the immune system by docking to receptors on host cells that are important for proper functioning of the immune system. A well-known example is the human immunodeficiency virus that uses CD4 cell surface molecules to enter host lymphocytes and thereby deleteriously destroying the helper cell population of the immune system. A more complicated mechanism is seen in multiple sclerosis (MS) where human herpes virus-6A (HHV-6A) infects astrocytes by docking to the CD46 surface receptor. Such HHV-6A infection in the brain of MS patients has recently been postulated to enable Epstein-Barr virus (EBV) to transform latently infected B-lymphocytes in brain lesions leading to the well-known phenomenon of oligoclonal immunoglobulin production that is widely used in the diagnosis of MS. The cellular immune response to HHV-6A and EBV is one part of the pathogenic mechanisms in MS. A more subtle pathogenic mechanism can be seen in the downregulation of CD46 on astrocytes by the infecting HHV-6A. Since CD46 is central in regulating the complement system, a lack of CD46 can lead to hyperactivation of the complement system. In fact, activation of the complement system in brain lesions is a well-known pathogenic mechanism in MS. In this review, it is postulated that a similar mechanism is central in the development of age-related macular degeneration (AMD). One of the earliest changes in the retina of AMD patients is the loss of CD46 expression in the retinal pigment epithelial (RPE) cells in the course of geographic atrophy. Furthermore, CD46 deficient mice spontaneously develop dry-type AMD-like changes in their retina. It is also well known that certain genetic polymorphisms in the complement-inhibiting pathways correlate with higher risks of AMD development. The tenet is that HHV-6A infection of the retina leads to downregulation of CD46 and consequently to hyperactivation of the complement system in the eyes of susceptible individuals.

Publisher URL: http://doi.org/10.3389/fimmu.2017.01314

DOI: 10.3389/fimmu.2017.01314

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.