3 years ago

The intrinsically disordered C-terminal linker of FtsZ regulates protofilament dynamics and superstructure in vitro.

Kousik Sundararajan, Erin D Goley
The bacterial tubulin FtsZ2 polymerizes to form a discontinuous ring that drives bacterial cell division by directing local cell wall synthesis. FtsZ comprises a polymerizing GTPase domain, an intrinsically disordered C-terminal linker (CTL) and a C-terminal conserved peptide (CTC). FtsZ protofilaments align circumferentially in the cell, with the CTC mediating attachment to membrane-associated division proteins. The assembly of FtsZ protofilaments into dynamic clusters is critical for cell division, but the interactions between protofilaments and regulatory mechanisms that mediate cluster assembly and dynamics are unknown. Here, we describe a role for the CTL of Caulobacter crescentus FtsZ as an intrinsic regulator of lateral interactions between protofilaments in vitro. FtsZ lacking its CTL (∆CTL) shows dramatically increased propensity to form long multifilament bundles compared to wildtype (WT). ∆CTL also displays a reduced GTP hydrolysis rate compared to WT, but this altered activity does not account for bundle formation, as reducing protofilament turnover in WT is not sufficient to induce bundling. Surprisingly, binding of the membrane-anchoring protein FzlC disrupts ∆CTL bundling in a CTC-dependent manner. Moreover, the CTL affects the ability of the FtsZ curving protein FzlA to promote formation of helical bundles. We conclude that the CTL of FtsZ influences polymer structure and dynamics both through intrinsic effects on lateral interactions and turnover and by influencing extrinsic regulation of FtsZ by binding partners. Our characterization of CTL function provides a biochemical handle for understanding the relationship between FtsZ ring structure and function in bacterial cytokinesis.

Publisher URL: http://doi.org/10.1074/jbc.M117.809939

DOI: 10.1074/jbc.M117.809939

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.