3 years ago

Hydrogen evolution during the electrodeposition of gold nanoparticles at Si(100) photoelectrodes impairs the analysis of current-time transients

Hydrogen evolution during the electrodeposition of gold nanoparticles at Si(100) photoelectrodes impairs the analysis of current-time transients
The electrodeposition of noble metals, particularly gold, on semiconducting surfaces is a common step in the development of optoelectronic and catalytic devices. Theoretical models of electrodeposition transients can provide mechanistic insights on nucleation and growth of metal particles. Here we study to what extent these models can be applied to the growth of gold nanoparticles on semiconductor photoelectrodes, with the ultimate purpose of being able to control in two dimensions the electrodepostion process. We have examined current transients for the reduction of aurate salts at Si(100) photocathodes and have made adjustments both to the experimental parameters as well as to the available models so as to account for parallel adsorption steps. We have observed to what extent these models hold predictive power for a nucleation process on semiconducting photoelectrodes. We found that the hydrogen evolution reaction is significant even at very basic pH values, leading to a poor match between the modelled and actual outcomes in electrodeposition experiments. We have concluded that the catalytic activity of gold particles and semiconductor photoeffects make it difficult to rely on current transients alone to refine the experimental conditions for the growth of gold particles on Si(100) photocathodes. Specifically, it is proposed that hydrogen evolution causes turbulence leading to the displacement of particles and significant aggregation on the surface. A solution to this problem is to electrodeposit metals with high overpotentials for hydrogen evolution, such as copper, which allows us to control nucleation and ultimately to use illumination patterns to spatially address nanoparticle deposition on semiconducting surfaces.

Publisher URL: www.sciencedirect.com/science

DOI: S0013468617313646

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.