4 years ago

NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors

NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors
A facile hydrothermal method is invoked for direct template-free synthesis of nickel cobaltite (NiCo2O4)-decorated porous carbon nanosheets using polymeric 3,4-ethylenedioxythiophene (EDOT) as the precursor. The nanocomposite materials (named as NC-ECN) so fabricated were characterized by a variety of different techniques (viz. SEM/TEM, XPS, EDX etc.). These novel NC-ECN nanocomposites, which exhibit flower-like morphology and excellent electrochemical properties such as good electric conductivity and redox properties, high specific capacitance, excellent rate capability and cyclability, are shown to be desirable for high-performance pseudosupercapacitor applications. On the basis of cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements, the NC-ECN modified electrode was found to exhibit a maximum specific capacitance of 596.8Fg−1 measured at a current density of 2Ag−1 over an aqueous 6.0M KOH electrolyte solution. Moreover, the fabricated supercapacitor is also found to have excellent cyclability, retaining ca. 98% of its capacitance over more than 3,000 charge-discharge cycles. The excellent pseudocapacitive performances observed for the NC-ECN electrode results are attributed to the synergistic effect of redox characteristics of binary metal oxide and the improved electric conductivity of the porous ECN carbon nanosheets, which effectively enhances kinetics of ion diffusion.

Publisher URL: www.sciencedirect.com/science

DOI: S0013468617314093

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.