3 years ago

Experimental Evaluation of Turbidity Impact on the Fluence Rate Distribution in a UV Reactor Using a Microfluorescent Silica Detector

Experimental Evaluation of Turbidity Impact on the Fluence Rate Distribution in a UV Reactor Using a Microfluorescent Silica Detector
managing.editor@est.acs.org (American Chemical Society)
Turbidity is a common parameter used to assess particle concentration in water using visible light. However, the fact that particles play multiple roles (e.g., scattering, refraction, and reflection) in influencing the optical properties of aqueous suspensions complicates examinations of their effects on ultraviolet (UV) photoreactor performance. To address this issue, UV fluence rate (FR) distributions in a photoreactor containing various particle suspensions (SiO2, MgO, and TiO2) were measured using a microfluorescent silica detector (MFSD). Reflectance of solid particles, as well as transmittance and scattering properties of the suspensions were characterized at UV, visible, and infrared (IR) wavelengths. The results of these measurements indicated that the optical properties of all three particle types were similar at visible and IR wavelengths, but obvious differences were evident in the UV range. The FR results indicated that for turbidity associated with SiO2 and MgO suspensions, the weighted average FR (WAFR) increased relative to deionized water. These increases were attributed to low particle photon absorption and strong scattering. In contrast, the WAFR values decreased with increasing turbidity for TiO2 suspensions because of their high particle photon absorption and low scattering potential. The findings also indicate that measurements of scattering and transmittance at UV wavelengths can be used to quantify the effects of turbidity on UV FR distributions.

Publisher URL: http://dx.doi.org/10.1021/acs.est.7b02730

DOI: 10.1021/acs.est.7b02730

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.