3 years ago

Ecotoxicological efficiency of advanced ozonation processes with TiO 2 and black light used in the degradation of carbamazepine

Fernando Juan Beltrán, Juan José Pérez Sagasti, António Miguel Floro, Ana Lourdes Oropesa, Patrícia Palma

Abstract

The aim of the present study was to evaluate the ecotoxicological efficiency of two advanced ozonation processes (AOzPs), the catalytic ozonation (O3/TiO2) and the photocatalytic ozonation (O3/TiO2/black light), in the remotion of carbamazepine. The ecotoxicological efficiency was assessed through the use of lethal and sublethal assays with species Vibrio fischeri and Daphnia magna. Results demonstrated that the AOzPs presented an efficiency of carbamazepine removal higher than 99% (carbamazepine < 2 μg/L) after 12 min of treatment. Relatively to ecotoxicological evaluation, application of acute assay to V. fischeri and chronic assay to D. magna allowed us to highlight that these technologies may form some transformation products that induce toxicity in the bacteria and the crustacean, once these organisms exposed to the undiluted solutions (100%) showed a decrease in the bioluminescence (vibrio) and end up dying before and during the first reproduction (daphnia). Despite that, when the chronic results obtained with the diluted solutions (50 and 25%; important to assess a more realistic scenario considering the dilution factor at the environment) were analyzed, no mortality at the mothers was observed. Compared to a carbamazepine solution (200 μg/L), diluted solutions improved of the reproduction parameters, and no toxic effects in the juvenoid system and in the embryonic development were observed. Relatively to the ecdysteroid effect of a carbamazepine solution (200 μg/L), only the photocatalytic ozonation treatment was able to remove the action of the drug. These results highlight the importance of complementing chemical analysis with ecotoxicological bioassays to assess the best technology to improve the surface water and effluent quality.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0602-1

DOI: 10.1007/s11356-017-0602-1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.