5 years ago

Enhanced efficiency of DSSC through AC-electrophoretic hybridization of TiO2 nanoparticle and nanotube

Enhanced efficiency of DSSC through AC-electrophoretic hybridization of TiO2 nanoparticle and nanotube
In this study, an efficient hybrid photoanode consisting of freestanding TiO2 nanotube (TNT) membranes and TiO2 nanoparticles (TNPs) was fabricated by high-frequency AC-electrophoresis deposition (TNT-TNP-EPD). The photovoltaic performance, transient properties and electron transport resistance of TNT-TNP-EPD photoanode were analyzed by photocurrent density-voltage (I–V) curve, open circuit voltage decay (OCVD) measurements and electrochemical impedance spectra (EIS). The power conversion efficiency (PCE) of dye-sensitized solar cell (DSSC) fabricated by bare TNT (TNT-B) was significantly improved up to 95% by AC-EPD introducing the TiO2 nanoparticles into the photoanode. The efficiency enhancement is due to produce the very uniform film with a high active surface area which is in turn due to the very regular arrangement of deposited particles by modulated high-frequency AC-EPD. This procedure was compared with doctor blade hybridization (TNT-TNP-DB photoanode) and TiCl4 sol treatment (TNT-TiCl4 photoanode) methods The TNT-TNP-EPD photoanode shows higher PCE than the others. Moreover, the EIS results show that TNT-TNP-EPD has better electron transport than other ones; 31.65 vs. 44.69, 56.86 and 67.34Ω for TNT-TNP-DB, TNT-TiCl4, and TNT-B, respectively. However, the recombination rate of TNT-TNP-EPD is higher than TNT-B and TNT-TiCl4 which can be attributed to the increase of grain boundaries with introducing TNP to the TNT arrays. Nonetheless, the recombination rate of TNT-TNP-EPD is lower than TNT-TNP-DB due to greater uniformity of the nanoparticles in AC-EPD.

Publisher URL: www.sciencedirect.com/science

DOI: S0013468617314536

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.