3 years ago

Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants.

Oliver Just, Irene Tamborra, Hans-Thomas Janka, Meng-Ru Wu

The remnant of neutron star mergers is dense in neutrinos. By employing inputs from one hydrodynamical simulation of a binary neutron star merger remnant with a black hole of $3\ M_\odot$ in the center, dimensionless spin parameter $0.8$ and an accretion torus of $0.3\ M_\odot$, the neutrino emission properties are investigated as the merger remnant evolves. Initially, the local number density of $\bar{\nu}_e$ is larger than that of $\nu_e$ everywhere above the remnant. Then, as the torus approaches self-regulated equilibrium, the local abundance of neutrinos overcomes that of antineutrinos in a funnel around the polar region. The region where the fast pairwise flavor conversions can occur shrinks accordingly as time evolves. Still, we find that fast flavor conversions do affect most of the neutrino-driven ejecta. Assuming that fast flavor conversions lead to flavor equilibration, a significant enhancement of nuclei with mass numbers $A>130$ is found as well as a change of the lanthanide mass fraction by more than a factor of a thousand. Our findings hint towards a potentially relevant role of neutrino flavor oscillations for the prediction of the kilonova (macronova) lightcurves and motivate further work in this direction.

Publisher URL: http://arxiv.org/abs/1711.00477

DOI: arXiv:1711.00477v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.