3 years ago

Gravitational Waves and Intermediate Massive Black Hole Retention in Globular Clusters.

Idan Ginsburg, Bence Kocsis, Giacomo Fragione

The recent discovery of gravitational waves has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes which reside in galactic nuclei. The intermediate mass black hole (IMBH) family has not been detected beyond any reasonable doubt neither directly nor indirectly. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters. In this paper, we investigate the possibility that globular clusters were born with a central IMBH, which undergo repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the Gravitational Wave (GW) mergers of the binary IMBH-SBH systems. Our models predict $\approx 1000$ IMBHs within $1$ kpc from the Galactic Center. Our results show that the IMBH-SBH merger rate density changes from $\mathcal{R}\approx 1000$ Gpc$^{-3}$ yr$^{-1}$ beyond $z\approx 2$ to $\mathcal{R}\approx 1-10$ Gpc$^{-3}$ yr$^{-1}$ at $z\approx 0$. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between $10^3$ and $10^4\,\mathrm{M}_{\odot}$. Currently there are no LIGO/VIRGO upper limits for GW sources in this mass range, but at design sensitivity these instruments may detect these IMBH-SBH mergers in the coming years. \textit{LISA} and the Einstein Telescope will be best suited to detect these GW events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

Publisher URL: http://arxiv.org/abs/1711.00483

DOI: arXiv:1711.00483v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.