3 years ago

Solar plasma radio emission in the presence of imbalanced turbulence of kinetic-scale Alfv\'en waves.

Yuriy Voitenko, Nicolas Bian, Donald Melrose, Eduard Kontar, Olena Lyubchyk

We study the influence of kinetic-scale Alfv\'enic turbulence on the generation of plasma radio emission in the solar coronal regions where the plasma/magnetic pressure ratio $\beta $ is smaller than the electron/ion mass ratio $m_{e}/m_{i}$. The present study is motivated by the phenomenon of solar type I radio storms associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to $10^{10}$ K for continuum emission, and can exceed $10^{11}$ K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose the model with the imbalanced turbulence of kinetic-scale Alfv\'en waves producing an asymmetric quasilinear plateau on the upward half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo a strong Landau damping. Our model predicts $100\%$ polarization in the sense of the ordinary (o-) mode of type I emission.

Publisher URL: http://arxiv.org/abs/1707.02295

DOI: arXiv:1707.02295v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.