Dipolar bright solitons and solitary vortices in a radial lattice.
Stabilizing vortex solitons with high values of the topological charge, S, is a challenging issue in optics, studies of Bose-Einstein condensates (BECs) and other fields. To develop a new approach to the solution of this problem, we consider a two-dimensional dipolar BEC under the action of an axisymmetric radially periodic lattice potential, $V(r)\sim \cos (2r+\delta )$, with dipole moments polarized perpendicular to the system's plane, which gives rise to isotropic repulsive dipole-dipole interactions (DDIs). Two radial lattices are considered, with $\delta =0$ and $\pi $, i.e., a potential maximum or minimum at $r=0$, respectively. Families of vortex gapsoliton (GSs) with $S=1$ and $S\geq 2$, the latter ones often being unstable in other settings, are completely stable in the present system (at least, up to $S=11$), being trapped in different annular troughs of the radial potential. The vortex solitons with different $S$ may stably coexist in sufficiently far separated troughs. Fundamental GSs, with $S=0$, are found too. In the case of $\delta =0$, the fundamental solitons are ring-shaped modes, with a local minimum at $r=0.$At $\delta =\pi $, they place a density peak at the center.
Publisher URL: http://arxiv.org/abs/1708.02011
DOI: arXiv:1708.02011v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.