3 years ago

Gravitational wave bursts from Primordial Black Hole hyperbolic encounters.

Savvas Nesseris, Juan Garcia-Bellido

We propose that Gravitational Wave (GW) bursts with millisecond durations can be explained by the GW emission from the hyperbolic encounters of Primordial Black Holes in dense clusters. These bursts are single events, with the bulk of the released energy happening during the closest approach, and emitted in frequencies within the AdvLIGO sensitivity range. We provide expressions for the shape of the GW emission in terms of the peak frequency and amplitude, and estimate the rates of these events for a variety of mass and velocity configurations. We study the regions of parameter space that will allow detection by both AdvLIGO and, in the future, LISA. We find for realistic configurations, with total mass $M\sim60\,M_\odot$, relative velocities $v\sim 0.01\,c$, and impact parameters $b\sim10^{-3}$ AU, for AdvLIGO an expected event rate is ${\cal O}(10)$ events/yr/Gpc$^3$ with millisecond durations. For LISA, the typical duration is in the range of minutes to hours and the event-rate is ${\cal O}(10^3)$ events/yr/Gpc$^3$ for both $10^3\,M_\odot$ IMBH and $10^6\,M_\odot$ SMBH encounters. We also study the distribution functions of eccentricities, peak frequencies and characteristic timescales that can be expected for a population of scattering PBH with a log-normal distribution in masses, different relative velocities and a flat prior on the impact parameter.

Publisher URL: http://arxiv.org/abs/1706.02111

DOI: arXiv:1706.02111v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.