3 years ago

Dipolar bright solitons and solitary vortices in a radial lattice.

Chunqing Huang, Yongyao Li, Haishu Tan, Boris A. Malomed, Shenhe Fu, Hao Huang, Zhaopin Chen, Lin Lyu

Stabilizing vortex solitons with high values of the topological charge, S, is a challenging issue in optics, studies of Bose-Einstein condensates (BECs) and other fields. To develop a new approach to the solution of this problem, we consider a two-dimensional dipolar BEC under the action of an axisymmetric radially periodic lattice potential, $V(r)\sim \cos (2r+\delta )$, with dipole moments polarized perpendicular to the system's plane, which gives rise to isotropic repulsive dipole-dipole interactions (DDIs). Two radial lattices are considered, with $\delta =0$ and $\pi $, i.e., a potential maximum or minimum at $r=0$, respectively. Families of vortex gapsoliton (GSs) with $S=1$ and $S\geq 2$, the latter ones often being unstable in other settings, are completely stable in the present system (at least, up to $S=11$), being trapped in different annular troughs of the radial potential. The vortex solitons with different $S$ may stably coexist in sufficiently far separated troughs. Fundamental GSs, with $S=0$, are found too. In the case of $\delta =0$, the fundamental solitons are ring-shaped modes, with a local minimum at $r=0.$At $\delta =\pi $, they place a density peak at the center.

Publisher URL: http://arxiv.org/abs/1708.02011

DOI: arXiv:1708.02011v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.